Ergodic Theory - Week 7

Course Instructor: Florian K. Richter
Teaching assistant: Konstantinos Tsinas

1 Classifying measure preserving systems

P1. Show that any factor of an ergodic system is ergodic. Find an example of a non-ergodic system
with an ergodic factor.

Let (X, A, u,T) be an ergodic measure preserving system, let Y, B, v, S) be a factor, and let
7 : X — Y be the associated factor map. Let f be a S-invariant function. Then we have that

fom=foSom=fomoTl u— almost everywhere.

Since T is ergodic, it follows that f o w is almost everywhere constant, and thus, f is almost
everywhere constant.

Let a € [0, 1)be irrational. The system (T2, By2, mq2, R, X R,) is not ergodic, but the rotation
by a is an ergodic factor of this system (the associated map is the projection on the first
coordinate). To see that this system is not ergodic, consider the function f given by f(x,y) =
x — y, and notice that this is a non-constant invariant function.

P2. Let G be a compact abelian group. Show that a group rotation by some « € G is ergodic if and
only if {na},ez is a dense subgroup of G.
Hint: You may use that any function in L?(G) has a Fourier expansion f = Zx f(x)x where
convergence is understood to be in the L?(G)-norm.

(=) Suppose the rotation T' by a € G is not dense in {na},cz. Then there exists a non-
trivial character £ such that £(na) = 1 for all n € Z. Indeed, consider H = {na},ez which
is a compact strict subgroup of GG. Consider the compact abelian group G//H and take any
non-trivial character £ in G/H. Then, define £(g) = &(g+ H). Clearly &(g) = 1 for every
g € H, ¢ is a morphism from G to S', and it is continuous by being composition of continuous
functions.

Now take f = &. Then f is a non-constant, T-invariant function, and therefore T is not ergodic.

(<=) If {na}nez is dense in G, then for any non-trivial character £, we have {(«) # 1. Let f
be a T-invariant function in L?(G) and write its Fourier expansion

f= ch.
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Since foT = f, we have
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By the uniqueness of the Fourier coefficients, we have c¢{(a) = ¢¢ for all £. Since {(a) # 1 for




all non-trivial &, it follows that ¢ = 0 for all £ # 1. Then f = ¢; which is constant, and this
shows that 7' is ergodic.

P3. We call a system (X, B, u, T) totally ergodic if for every k € N the map T* is ergodic with respect
to p.

(a) Show that if (X, B, u,T) is totally ergodic, then for any a,b € N we have
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This is a simple application of von Neumann’s ergodic theorem. Indeed, observe that
To+b f = (T*)"(TPf) and since the transformation T is ergodic, we deduce that (con-
vergence here is in L?-norm)

N
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Tty [ = [ £ an
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where the last equality follows from the fact that T" preserves the measure p.

(b) Show that an ergodic system is totally ergodic if and only if every eigenfunction with
corresponding eigenvalue that is a root of unity is constant almost everywhere.

Assume that a system is totally ergodic and let f be an eigenfunction with eigenvalue A
that is a root of unity. Thus, there exists r € N such that A" = 1. We conclude that

Upf=Upt(\f)=--=\Nf=Ff.

Since T" is ergodic, we conclude that f is constant almost everywhere.

For the converse direction, assume that the system is not totally ergodic. Therefore, there
exists £ € N and a non-constant function f € L?(X) for which ULf = f.

If £k =1, we get that Upf = f, which means that f is an eigenfunction (with eigenvalue
1). Therefore, f is constant almost everywhere, which is a contradiction. Therefore, we
get k > 2 and that T is ergodic.

Now, we suppose that & > 2. We consider the non-trivial roots of unity w; = e(3) where
0 < i<k —1 and define the functions

gi=f+wUrf+ -+ UL

Observe that, since Uzli f = f, we have

_ 1
Urgi = Urf +wiUdf + -+ f = Urg; = i
(2
Therefore, g; is an eigenfunction with eigenvalue a root of unity and our hypothesis implies
that g; is constant. In fact, for i # 0 (that is, w; # 1), we get that since Urg; = w;g;, the
corresponding constant is zero and, hence, g; = 0 almost everywhere.

We sum the functions g; for 0 < i < k — 1 and deduce that
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is constant almost everywhere. Changing the order of summation, we have
k—1 k—1 ri
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for some constant C'. Notice that
" <m> k, ifr=0
(& _— =
s k 0, ifr#0

Namely, all the terms in the last sum disappear, apart from the term with » = 0. We
conclude that kf = C almost everywhere and thus f is a constant function, which is a
contradiction. We conclude that the system is totally ergodic.

P4. (a) Let (X, B, u,T) be an ergodic measure preserving system, and let o € (0, 1) such that e(«)
is an eigenvalue. Show that there exists a non-trivial group rotation that is a factor of
(X,B,u,T).

Hint: When a = r/q is rational (with ¢ minimal among all such rational eigenvalues),
construct a T'%-invariant set B such that u(B) = 1/q.

Let f € L?(X) be the eigenfunction corresponding to the given eigenvalue. Then Tf =
e(a)f and f is non-constant.

Suppose first that o € Q. We write a = r/q for some 0 < r < ¢ with (r,q) = 1. Then
Tif = f and thus the transformation 7 is not ergodic. Let ¢ > 2 be the minimal integer
(larger than 1) for which T is not ergodic and consider A € B such that 7774 = A and
p(A) € (0,1).

Define g = Z;};:%) T™1 4 and notice that g is T-invariant. It follows by ergodicity that g is
almost everywhere equal to some integer constant, and then gu(A) = [ gdu € Z. Thus,
w(A) = k/q for some k € {1,...,q—1}.

Claim. There exists a T-invariant set B € B such that u(B) =1/q.

To prove the claim, suppose that k£ > 1, since otherwise the claim holds trivially. First,
we notice that by the pigeonhole principle, there exists some m € {1,...,¢— 1} such that
(A1) >0, where Ay = ANT ™A, If u(A;) = p(A), then T~™A = A almost everywhere,
which contradicts the minimality of ¢. Then 0 < p(A;) < u(A) = k/q. We can define g;
as we defined ¢ substituting A with A, and since A; is also T%-invariant, then as before,
there exists some integer 0 < k1 < k such that pu(Ay) = k1/q. If k; = 1, then the claim
follows by taking B = A;. Otherwise we repeat the same argument for A; instead of
A, to find some set Ay with p(As) = ka/q for some 0 < ko < k1. Inductively, we find
j€{l,...,q— 1} such that B = A; satisfies the claim.

Now, consider the set Y = {0,...,qg— 1}, let By be the discrete o-algebra on Y, v be the
normalized counting measure on Y, and let S : y +— y + 1 (mod ¢). Then (Y, By,v,S)
is a measure-preserving system (a rotation on finitely many points). Using our claim, we
deduce that the sets B, !B, ..., T9 ' B form a partition of X, thus for any € X, there
exists a unique y, € Y such that x € T7Y% B. We can then define the map 7 : X — Y by
m(x) =y, and it is not hard to check that this is a factor map.

Now suppose that o ¢ Q. We show that (T, By, mr, R,) is a factor of (X, B, u,T). We
identify T with [0,1) for simplicity. Let 7 : X — T be the map defined uniquely by the
equality f(xz) = e(m(x)). Observe that this is well-defined for almost all z € X, since
|f(x)] = 1 almost everywhere.




We observe that
e(n(Txz)) = f(Tz) = e(a)f(z) = e(n(z) + a) = e(Ram(2)),

which means that 7(Tz) = R,7(x) almost everywhere. Finally, 7 preserves mr. To see
this, define a measure v on T by v(A) = u(r~tA), A € B. We easily check that v is
R,-invariant, and so it is the Haar measure my (the only measure invariant under an
irrational rotation is the Haar measure).

(b) Show that given any countable subgroup K < S!, there exists a measure preserving system
(X, B, 1, T) on a Borel probability space such that K is the point-spectrum of 7.
Hint: To construct the system take X = K , 4 = my the normalized Haar measure on X,
and T to be some appropriate group rotation.

Give K the discrete topology, so that the dual group Kisa compact metric abelian group.
Following the hint, we take X = K, = mx the normalized Haar measure on X. Define
the character § € X by 0(k) = k, for k € K. Define the transformation 7': X — X to be
the rotation by 6. In this way, (X, B, u,T) is a measure-preserving system. We need to
show that such a system has point-spectrum K.

First, we see that K < spec(T'). Indeed, we recall that Pontryagin’s Theorem yields that
K is isomorphic to X given by k — f;, where f(z) = (k). Therefore, for any character
fr € Xandze X

(Urfi)(z) = fr.(0z) = fir.(0) fr.(x) = 0(k) fr(x) = k fr(z).

Thus f is an eigenfunction of Ur with eigenvalue k, and hence K < spec(T).

To prove the other direction, recall that for any compact abelian group G we have that
G is a orthonormal basis for L?(G). This means that if f is an eigenfunction of Ur with

eigenvalue A, then
F=> cufe
keK

where ¢;, € C and the equality is in L?(X). Applying Ur and using the uniqueness of the
coefficients, we have that
kck = )\Ck,

for every k € K. Thus ¢ = 0 unless k = A, and therefore f = c) fy. Therefore spec(T') <
K since K is isomorphic to X.




