
Ergodic Theory - Week 7

Course Instructor: Florian K. Richter
Teaching assistant: Konstantinos Tsinas

1 Classifying measure preserving systems

P1. Show that any factor of an ergodic system is ergodic. Find an example of a non-ergodic system
with an ergodic factor.

Let (X,A, µ, T ) be an ergodic measure preserving system, let Y,B, ν, S) be a factor, and let
π : X → Y be the associated factor map. Let f be a S-invariant function. Then we have that

f ◦ π = f ◦ S ◦ π = f ◦ π ◦ T µ− almost everywhere.

Since T is ergodic, it follows that f ◦ π is almost everywhere constant, and thus, f is almost
everywhere constant.

Let a ∈ [0, 1)be irrational. The system (T2,BT2 ,mT2 , Ra ×Ra) is not ergodic, but the rotation
by a is an ergodic factor of this system (the associated map is the projection on the first
coordinate). To see that this system is not ergodic, consider the function f given by f(x, y) =
x− y, and notice that this is a non-constant invariant function.

P2. Let G be a compact abelian group. Show that a group rotation by some α ∈ G is ergodic if and
only if {nα}n∈Z is a dense subgroup of G.
Hint: You may use that any function in L2(G) has a Fourier expansion f =

∑
χ f̃(χ)χ where

convergence is understood to be in the L2(G)-norm.

(=⇒) Suppose the rotation T by α ∈ G is not dense in {nα}n∈Z. Then there exists a non-
trivial character ξ such that ξ(nα) = 1 for all n ∈ Z. Indeed, consider H = {nα}n∈Z which
is a compact strict subgroup of G. Consider the compact abelian group G/H and take any
non-trivial character ξ̃ in G/H. Then, define ξ(g) = ˜ξ(g +H). Clearly ξ(g) = 1 for every
g ∈ H, ξ is a morphism from G to S1, and it is continuous by being composition of continuous
functions.

Now take f = ξ. Then f is a non-constant, T -invariant function, and therefore T is not ergodic.

(⇐=) If {nα}n∈Z is dense in G, then for any non-trivial character ξ, we have ξ(α) ̸= 1. Let f
be a T -invariant function in L2(G) and write its Fourier expansion

f =
∑
ξ

cξξ.

Since f ◦ T = f , we have ∑
ξ

cξξ(α)ξ =
∑
ξ

cξξ.

By the uniqueness of the Fourier coefficients, we have cξξ(α) = cξ for all ξ. Since ξ(α) ̸= 1 for
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all non-trivial ξ, it follows that cξ = 0 for all ξ ̸= 1. Then f ≡ c1 which is constant, and this
shows that T is ergodic.

P3. We call a system (X,B, µ, T ) totally ergodic if for every k ∈ N the map T k is ergodic with respect
to µ.

(a) Show that if (X,B, µ, T ) is totally ergodic, then for any a, b ∈ N we have

ĺım
N→+∞

∥∥∥ 1

N

N∑
n=1

T an+bf −
∫

f dµ
∥∥∥
L2(µ)

= 0.

This is a simple application of von Neumann’s ergodic theorem. Indeed, observe that
T an+bf = (T a)n(T bf) and since the transformation T a is ergodic, we deduce that (con-
vergence here is in L2-norm)

1

N

N∑
n=1

T an+bf →
∫

T bf dµ =

∫
f dµ,

where the last equality follows from the fact that T preserves the measure µ.

(b) Show that an ergodic system is totally ergodic if and only if every eigenfunction with
corresponding eigenvalue that is a root of unity is constant almost everywhere.

Assume that a system is totally ergodic and let f be an eigenfunction with eigenvalue λ
that is a root of unity. Thus, there exists r ∈ N such that λr = 1. We conclude that

U r
T f = U r−1

T (λf) = · · · = λrf = f.

Since T r is ergodic, we conclude that f is constant almost everywhere.

For the converse direction, assume that the system is not totally ergodic. Therefore, there
exists k ∈ N and a non-constant function f ∈ L2(X) for which Uk

T f = f .

If k = 1, we get that UT f = f , which means that f is an eigenfunction (with eigenvalue
1). Therefore, f is constant almost everywhere, which is a contradiction. Therefore, we
get k ≥ 2 and that T is ergodic.

Now, we suppose that k ≥ 2. We consider the non-trivial roots of unity ωi = e( ik ) where
0 ≤ i ≤ k − 1 and define the functions

gi = f + ωiUT f + · · ·+ ωk−1
i Uk−1

T f.

Observe that, since Uk
T f = f , we have

UT gi = UT f + ωiU
2
T f + · · ·+ ωk−1

i f =⇒ UT gi =
1

ωi
gi.

Therefore, gi is an eigenfunction with eigenvalue a root of unity and our hypothesis implies
that gi is constant. In fact, for i ̸= 0 (that is, ωi ̸= 1), we get that since UT gi = ω̄igi, the
corresponding constant is zero and, hence, gi = 0 almost everywhere.

We sum the functions gi for 0 ≤ i ≤ k − 1 and deduce that

k−1∑
i=0

k−1∑
r=0

e

(
ri

k

)
U r
T f
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is constant almost everywhere. Changing the order of summation, we have

k−1∑
r=0

U r
T f

(
k−1∑
i=0

e

(
ri

k

))
= C m− a.e.

for some constant C. Notice that

k−1∑
i=0

e

(
ri

k

)
=

{
k, if r = 0

0, if r ̸= 0
.

Namely, all the terms in the last sum disappear, apart from the term with r = 0. We
conclude that kf = C almost everywhere and thus f is a constant function, which is a
contradiction. We conclude that the system is totally ergodic.

P4. (a) Let (X,B, µ, T ) be an ergodic measure preserving system, and let α ∈ (0, 1) such that e(α)
is an eigenvalue. Show that there exists a non-trivial group rotation that is a factor of
(X,B, µ, T ).
Hint: When a = r/q is rational (with q minimal among all such rational eigenvalues),
construct a T q-invariant set B such that µ(B) = 1/q.

Let f ∈ L2(X) be the eigenfunction corresponding to the given eigenvalue. Then Tf =
e(α)f and f is non-constant.

Suppose first that α ∈ Q. We write α = r/q for some 0 < r < q with (r, q) = 1. Then
T qf = f and thus the transformation T q is not ergodic. Let q ≥ 2 be the minimal integer
(larger than 1) for which T q is not ergodic and consider A ∈ B such that T−qA = A and
µ(A) ∈ (0, 1).

Define g =
∑q−1

n=0 T
n1A and notice that g is T -invariant. It follows by ergodicity that g is

almost everywhere equal to some integer constant, and then qµ(A) =
∫
gdµ ∈ Z. Thus,

µ(A) = k/q for some k ∈ {1, . . . , q − 1}.
Claim. There exists a T q-invariant set B ∈ B such that µ(B) = 1/q.

To prove the claim, suppose that k > 1, since otherwise the claim holds trivially. First,
we notice that by the pigeonhole principle, there exists some m ∈ {1, . . . , q− 1} such that
µ(A1) > 0, where A1 = A∩T−mA. If µ(A1) = µ(A), then T−mA = A almost everywhere,
which contradicts the minimality of q. Then 0 < µ(A1) < µ(A) = k/q. We can define g1
as we defined g substituting A with A1, and since A1 is also T q-invariant, then as before,
there exists some integer 0 < k1 < k such that µ(A1) = k1/q. If k1 = 1, then the claim
follows by taking B = A1. Otherwise we repeat the same argument for A1 instead of
A, to find some set A2 with µ(A2) = k2/q for some 0 < k2 < k1. Inductively, we find
j ∈ {1, . . . , q − 1} such that B = Aj satisfies the claim.

Now, consider the set Y = {0, . . . , q− 1}, let BY be the discrete σ-algebra on Y , ν be the
normalized counting measure on Y , and let S : y 7→ y + 1 (mod q). Then (Y,BY , ν, S)
is a measure-preserving system (a rotation on finitely many points). Using our claim, we
deduce that the sets B, T−1B, . . . , T q−1B form a partition of X, thus for any x ∈ X, there
exists a unique yx ∈ Y such that x ∈ T−yxB. We can then define the map π : X → Y by
π(x) = yx, and it is not hard to check that this is a factor map.

Now suppose that α /∈ Q. We show that (T,BT,mT, Rα) is a factor of (X,B, µ, T ). We
identify T with [0, 1) for simplicity. Let π : X → T be the map defined uniquely by the
equality f(x) = e(π(x)). Observe that this is well-defined for almost all x ∈ X, since
|f(x)| = 1 almost everywhere.

3



We observe that

e(π(Tx)) = f(Tx) = e(α)f(x) = e(π(x) + α) = e(Rαπ(x)),

which means that π(Tx) = Raπ(x) almost everywhere. Finally, π preserves mT. To see
this, define a measure ν on T by ν(A) = µ(π−1A), A ∈ B. We easily check that ν is
Rα-invariant, and so it is the Haar measure mT (the only measure invariant under an
irrational rotation is the Haar measure).

(b) Show that given any countable subgroup K ≤ S1, there exists a measure preserving system
(X,B, µ, T ) on a Borel probability space such that K is the point-spectrum of T .
Hint: To construct the system take X = K̂, µ = mX the normalized Haar measure on X,
and T to be some appropriate group rotation.

Give K the discrete topology, so that the dual group K̂ is a compact metric abelian group.
Following the hint, we take X = K̂, µ = mX the normalized Haar measure on X. Define
the character θ ∈ X by θ(k) = k, for k ∈ K. Define the transformation T : X → X to be
the rotation by θ. In this way, (X,B, µ, T ) is a measure-preserving system. We need to
show that such a system has point-spectrum K.

First, we see that K ≤ spec(T ). Indeed, we recall that Pontryagin’s Theorem yields that
K is isomorphic to X̂ given by k → fk where fk(x) = x(k). Therefore, for any character
fk ∈ X̂ and x ∈ X

(UT fk)(x) = fk(θx) = fk(θ)fk(x) = θ(k)fk(x) = kfk(x).

Thus fk is an eigenfunction of UT with eigenvalue k, and hence K ≤ spec(T ).

To prove the other direction, recall that for any compact abelian group G we have that
Ĝ is a orthonormal basis for L2(G). This means that if f is an eigenfunction of UT with
eigenvalue λ, then

f =
∑
k∈K

ckfk,

where ck ∈ C and the equality is in L2(X). Applying UT and using the uniqueness of the
coefficients, we have that

kck = λck,

for every k ∈ K. Thus ck = 0 unless k = λ, and therefore f = cλfλ. Therefore spec(T ) ≤
K since K is isomorphic to X̂.
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